Search results for "Cell metabolism"
showing 10 items of 12 documents
Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy
2017
The tumor microenvironment (TME) is an ensemble of non-tumor cells comprising fibroblasts, cells of the immune system, and endothelial cells, besides various soluble secretory factors from all cellular components (including tumor cells). The TME forms a pro-tumorigenic cocoon around the tumor cells where reprogramming of the metabolism occurs in tumor and non-tumor cells that underlies the nature of interactions as well as competitions ensuring steady supply of nutrients and anapleoretic molecules for the tumor cells that fuels its growth even under hypoxic conditions. This metabolic reprogramming also plays a significant role in suppressing the immune attack on the tumor cells and in resis…
Functional comparison of bacteria from the human gut and closely related non-gut bacteria reveals the importance of conjugation and a paucity of moti…
2016
International audience; The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial fun…
Ions channels/transporters and chloroplast regulation.
2015
International audience; Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehen…
PGC-1α: a master gene that is hard to master
2012
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a transcriptional coactivator that favorably affects mitochondrial function. This concept is supported by an increasing amount of data including studies in PGC-1α gene-deleted mice, suggesting that PGC-1α is a rescue factor capable of boosting cell metabolism and promoting cell survival. However, this view has now been called into question by a recent study showing that adeno-associated virus-mediated PGC-1α overexpression causes overt cell degeneration in dopaminergic neurons. How is this to be understood, and can these seemingly conflicting findings tell us something about the role of PGC-1α in cell stress and in cont…
Reconstitution of T Cell Proliferation under Arginine Limitation: Activated Human T Cells Take Up Citrulline via L-Type Amino Acid Transporter 1 and …
2017
In the tumor microenvironment, arginine is metabolized by arginase-expressing myeloid cells. This arginine depletion profoundly inhibits T cell functions and is crucially involved in tumor-induced immunosuppression. Reconstitution of adaptive immune functions in the context of arginase-mediated tumor immune escape is a promising therapeutic strategy to boost the immunological anti-tumor response. Arginine can be recycled in certain mammalian tissues from citrulline via argininosuccinate in a two-step enzymatic process involving the enzymes argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL). Here we demonstrate that anti-CD3/anti-CD28-activated human primary CD4+ and CD8+ T c…
Levosimendan protects human hepatocytes from ischemia-reperfusion injury.
2017
Background Ischemia-reperfusion injury (IRI) is a major challenge in liver transplantation. The mitochondrial pathway plays a pivotal role in hepatic IRI. Levosimendan, a calcium channel sensitizer, was shown to attenuate apoptosis after IRI in animal livers. The aim of this study was to investigate the effect of levosimendan on apoptosis in human hepatocytes. Methods Primary human hepatocytes were either exposed to hypoxia or cultured under normoxic conditions. After the hypoxic phase, reoxygenation was implemented and cells were treated with different concentrations of levosimendan (10ng/ml, 100ng/ml, 1000ng/ml). The overall metabolic activity of the cells was measured using 3-(4,5-dimeth…
Intracellular compartmentation and plant cell signalling
1997
Compartmentation is an essential feature of eukaryotic cells, and is crucial for the regulation of cell metabolism. Recent progress has significantly improved the understanding of signal transduction pathways in plants, including the activation of light-signalling networks and the tightly controlled generation of the calcium message. Cell compartmentation is important for the regulation and proliferation of these signalling processes.
Non-specific Effects of Vaccines Illustrated Through the BCG Example: From Observations to Demonstrations
2018
Epidemiological studies regarding many successful vaccines suggest that vaccination may lead to a reduction in child mortality and morbidity worldwide, on a grander scale than is attributable to protection against the specific target diseases of these vaccines. These non-specific effects (NSEs) of the Bacille Calmette-Guérin (BCG) vaccine, for instance, implicate adaptive and innate immune mechanisms, with recent evidence suggesting that trained immunity might be a key instrument at play. Collectively referring to the memory-like characteristics of innate immune cells, trained immunity stems from epigenetic reprogramming that these innate immune cells undergo following exposure to a primary…
Metabolic classification and intervention opportunities for tumor energy dysfunction
2021
A comprehensive view of cell metabolism provides a new vision of cancer, conceptualized as tissue with cellular-altered metabolism and energetic dysfunction, which can shed light on pathophysiological mechanisms. Cancer is now considered a heterogeneous ecosystem, formed by tumor cells and the microenvironment, which is molecularly, phenotypically, and metabolically reprogrammable. A wealth of evidence confirms metabolic reprogramming activity as the minimum common denominator of cancer, grouping together a wide variety of aberrations that can affect any of the different metabolic pathways involved in cell physiology. This forms the basis for a new proposed classification of cancer accordin…
Distributed and Lumped Parameter Models for the Characterization of High Throughput Bioreactors
2016
Next generation bioreactors are being developed to generate multiple human cell-based tissue analogs within the same fluidic system, to better recapitulate the complexity and interconnection of human physiology. The effective development of these devices requires a solid understanding of their interconnected fluidics, to predict the transport of nutrients and waste through the constructs and improve the design accordingly. In this work, we focus on a specific model of bioreactor, with multiple input/outputs, aimed at gen- erating osteochondral constructs, i.e., a biphasic construct in which one side is cartilagi- nous in nature, while the other is osseous. We next develop a general computat…